skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pomerenk, Olivia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The passive flight of a thin wing or plate is an archetypal problem in flow–structure interactions at intermediate Reynolds numbers. This seemingly simple aerodynamic system displays an impressive variety of steady and unsteady motions that are familiar from fluttering leaves, tumbling seeds and gliding paper planes. Here, we explore the space of flight behaviours using a nonlinear dynamical model rooted in a quasisteady description of the fluid forces. Efficient characterisation is achieved by identification of the key dimensionless parameters, assessment of the steady equilibrium states and linear analysis of their stability. The structure and organisation of the stable and unstable flight equilibria proves to be complex, and seemingly related factors such as mass and buoyancy-corrected weight play distinct roles in determining the eventual flight patterns. The nonlinear model successfully reproduces previously documented unsteady states such as fluttering and tumbling while also predicting new types of motions, and the linear analysis accurately accounts for the stability of steady states such as gliding and diving. While the conditions for dynamic stability seem to lack tidy formulae that apply universally, we identify relations that hold in certain regimes and which offer mechanistic interpretations. The generality of the model and the richness of its solution space suggest implications for small-scale aerodynamics and related applications in biological and robotic flight. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  2. Mechanical systems with moving points of contact—including rolling, sliding, and impacts—are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body. We combine robotic experiments involving hoops twirling on surfaces of various geometries and a model that links the motions and shape to the contact forces generated. The in-plane motions of the hoop involve synchronization to the body gyration that is shown to require damping and sufficiently high launching speed. Further, vertical equilibrium is achieved only for bodies with “hips” or a critical slope of the surface, while stability requires an hourglass shape with a “waist” and whose curvature exceeds a critical value. Analysis of the model reveals dimensionless factors that successfully organize and unify observations across a wide range of geometries and kinematics. By revealing and explaining the mechanics of hula hoop levitation, these results motivate strategies for motion control via geometry-dependent contact forces and for accurately predicting the resulting equilibria and their stability. 
    more » « less
  3. Extensive studies of the hydraulics of pipes have focused on limiting cases, such as fully-developed laminar or turbulent flow through long conduits and the accelerating flow through an orifice, for which there exist laws relating pressure drop and flow rate. We carry out experiments on smooth, circular pipes for dimensions and flow rates that interrogate intermediate conditions between the well-studied limits. Organizing this information in terms of dimensionless friction factor, Reynolds number and pipe aspect ratio yields a surface $$f_D(Re,\alpha )$$ that is shown to match the three laws associated with developed laminar, developed turbulent, and orifice flows. While each law fails outside its applicable range of $$(Re,\alpha )$$ , we present a hybrid theoretical–empirical model that includes inlet, development and transition effects, and that proves accurate to approximately 10 % over wide ranges of $Re$ and $$\alpha$$ . We also present simple formulas for the boundaries between the three hydraulic regimes, which intersect at a triple point. Measurements show that sipping through a straw is an everyday example of such intermediate conditions not accounted for by existing laws but described accurately by our model. More generally, our findings provide formulas for predicting frictional resistance for intermediate- $Re$ flows through finite-length pipes. 
    more » « less